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Capacity of Pulse-Position Modulation (PPM)
on Gaussian and Webb Channels

S. Dolinar,1 D. Divsalar,1 J. Hamkins,1 and F. Pollara1

This article computes the capacity of various idealized soft-decision channels
modeling an optical channel using an avalanche photodiode detector (APD) and
pulse-position modulation (PPM). The capacity of this optical channel depends in a
complicated way on the physical parameters of the APD and the constraints imposed
by the PPM orthogonal signaling set. This article attempts to identify and separate
the effects of several fundamental parameters on the capacity of the APD-detected
optical PPM channel. First, an overall signal-to-noise ratio (SNR) parameter is
defined such that the capacity as a function of a bit-normalized version of this
SNR drops precipitously toward zero at quasi-brick-wall limits on bit SNR that
are numerically the same as the well-understood brick-wall limits for the standard
additive white Gaussian noise (AWGN) channel. A second parameter is used to
quantify the effects on capacity of one unique facet of the optical PPM channel
(as compared with the standard AWGN channel) that causes the noise variance to
be higher in signal slots than in nonsignal slots. This nonuniform noise variance
yields interesting capacity effects even when the channel model is AWGN. A third
parameter is used to measure the effects on capacity of the difference between an
AWGN model and a non-Gaussian model proposed by Webb (see reference in [2])
for approximating the statistics of the APD-detected optical channel. Finally, a
fourth parameter is used to quantify the blending of a Webb model with a pure
AWGN model to account for thermal noise.

Numerical results show that the capacity of M -ary orthogonal signaling on the
Webb channel exhibits the same brick-wall Shannon limit, (M ln 2)/(M − 1), as on
the AWGN channel (≈ −1.59 dB for large M). Results also compare the capacity
obtained by hard- and soft-output channels and indicate that soft-output channels
offer a 3-dB advantage.

I. Introduction

Our objective in this article is to compute and compare the capacities of various idealized channels that
might be used to approximate the optical communication system using M -ary pulse-position modulation
(PPM) and an avalanche photodiode (APD) detector: (1) the standard additive white Gaussian noise
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channel (here called AWGN-1); (2) a more general AWGN channel (AWGN-2) allowing different variances
in signal and noise slots; (3) a Webb-distributed channel (Webb-2) modeling the output of an APD in
the absence of thermal noise and surface leakage current; and (4) a blended Webb and Gaussian channel
(Webb+Gaussian) channel modeling Gaussian thermal noise and surface leakage current added to Webb-2
channel outputs.

In this article, we analyze in detail the capacities of these idealized channels in terms of certain
fundamental channel parameters defined in such a way as to accentuate the similarities between the more
complicated optical channel models and the familiar AWGN-1 channel for which capacity limits are well
understood. We also compare the capacities achievable with soft- and hard-decision channel outputs.
The appeal of using soft decisions lies in the ability to take advantage of better performing codes (e.g.,
turbo codes), which admit soft decoding algorithms.

Our ultimate goal is to develop an understanding of the role of various optical parameters on the
capacity of an optical communication system. A future article will attempt to utilize the conclusions
drawn from the idealized models to develop an understanding of the role of various physical optical
parameters on the capacity of an optical communication system.

II. Modeling the APD with Webb and Gaussian Approximations

In an optical communication system using an APD detector, the number of absorbed photons, n, is
a Poisson random variable with mean n̄ related to the total optical power, P (t), and to the observation
time, Ts, by n̄ = (η/hν)

∫ Ts
0

P (t)dt, where η is the detector’s quantum efficiency and hν is the photon
energy. In response to n absorbed photons, the APD generates an “avalanche” of q electrons with
a complicated conditional probability distribution derived by McIntyre (see reference in [2]), and the
probability mass function p(q) is obtained by averaging this conditional probability over the Poisson-
distributed n. Alternatively, p(q) can be approximated by a simpler continuous probability density derived
by Webb (see reference in [2]). Furthermore, it is known [2] that the Webb density is well approximated
by a Gaussian away from its tails, and that the approximation accuracy improves as n̄ gets large.

We begin by briefly discussing the McIntyre distribution and the various approximations to it that
form the basis of the idealized channels to be studied in this article.

A. McIntyre–Conradi Model of the APD

The actual number of photons absorbed is a Poisson-distributed random variable, n, with p(n) =
(n̄n/n!)e−n̄. The conditional probability p(q|n), q ≥ n, n ≥ 0, that the APD generates q electrons in
response to n absorbed photons was derived by McIntyre and Conradi and can be found in [11]. This
conditional probability distribution depends on several parameters of the APD detector, including its
gain, G, and ionization ratio, keff . See Appendix A for physical quantities and notation. The McIntyre–
Conradi probability density function of q, given an average n̄ absorbed photons, is obtained by averaging
the conditional probability distribution p(q|n) over the Poisson-distributed n:

pM (q) =
q∑

n=0

p(q|n)
n̄n

n!
e−n̄, q ≥ 0 (1)

The full APD output also contains additive Gaussian noise contributed by thermal noise and surface
leakage current. Thus, the total electron count x = q + q′ at the output of the APD has a probability
density function that is a convolution of the McIntyre–Conradi density, Eq. (1), for q with a Gaussian
probability density function for q′:
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p(x) =
∞∑
q=0

1
σ′

φ

(
x− q −m′

σ′

)
pM (q) (2)

where φ(x) = (1/
√

2π)e−x
2/2 denotes the standardized (zero-mean, unit-variance) Gaussian probability

density, and where [2] the mean m′ and variance σ′2 of the convolving Gaussian density depend on the
surface leakage current, Is, the thermal noise temperature, T , and other physical parameters. Again, see
Appendix A.

m′ =
IsTs
e−

σ′2 = 2BTs

(
IsTs
e−

+ κT
2Ts

RLe2
−

)
(3)

B. The Webb Approximation

The McIntyre–Conradi distribution pM (q) in Eq. (1) can be approximated by a continuous probability
density, pW (q), derived by Webb (see reference in [2]):

pW (q) =
1√

2πn̄G2F

(
1 +

(q −Gn̄)(F − 1)
GFn̄

)−3/2

exp

 −(q −Gn̄)2

2n̄G2F

(
1 +

(q −Gn̄)(F − 1)
GFn̄

)
 , q >

−Gn̄

F − 1

(4)

where G is the APD gain and F = keffG + (2 − 1/G)(1 − keff ) is an excess noise factor, given in terms
of the gain and the ionization ratio, keff .

The Webb-distributed electron count, q, is conveniently represented in terms of a standardized, scaled-
and-translated Webb random variable, w. Defining q = m + wσ, where m = Gn̄ and σ =

√
n̄G2F , the

probability density for the standardized Webb random variable w simplifies to

φ(w; δ2) =
1√
2π

(
1 +

w

δ

)−3/2

e−w
2/[2(1+w/δ)], w > −δ (5)

where δ2 = n̄F/(F − 1)2. The standardized Webb probability density φ(w; δ2) is plotted in Fig. 1
for various values of the parameter δ2, which determines the skewness of the density function around
the origin. Note that this standardized Webb probability reduces exactly to a standardized Gaussian
probability density when the parameter δ2 →∞. In other words, the standardized Gaussian density φ(x)
can be regarded as the limiting case φ(x;∞) of the family of standardized Webb densities φ(w; δ2).

If w is a standardized Webb random variable with skewness parameter δ2 and probability density
given by Eq. (5), then q = m + wσ is a Webb random variable with mean m, variance σ2, and skewness
δ2, and is denoted as W (m, σ2, δ2). The standardized Webb random variable w has zero mean and unit
variance and can be denoted as W (0, 1, δ2); higher moments of the standardized Webb probability density
can be computed as polynomials in the parameter 1/δ2, as shown in Appendix B. The Webb random
variable q in Eq. (4), approximating the APD output without thermal noise and surface leakage current,
is W (m, σ2, δ2) with m = Gn̄, σ2 = n̄G2F , and δ2 = n̄F/(F − 1)2.
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Fig. 1.  Family of standardized Webb probability density functions
[see Eq. (5)].

C. The Webb+Gaussian Approximation

With the Webb approximation to the McIntyre–Conradi random variable q, the full output x = q + q′

of the APD is then modeled as a sum of an electrical current due to the Webb-distributed electron count
q, plus an independent Gaussian count q′ due to thermal and surface leakage currents. It is convenient
to define a standardized, zero-mean, unit-variance Webb+Gaussian random variable, WG(0, 1, δ2, β) =√

β W (0, 1, δ2)+
√

1− β N(0, 1), that represents a blending of a pure Webb random variable, W (0, 1, δ2),
with a pure Gaussian random variable, N(0, 1). The blending parameter β measures the proportion
of the total variance contributed by the Webb component. The standardized Webb+Gaussian random
variable WG(0, 1, δ2, β) has a probability density φ(x; δ2, β) obtained as a convolution of scaled Webb
and Gaussian densities:

φ(x; δ2, β) =
∫ ∞
−δ

1√
β

φ

(
w√
β

; δ2

)
1√

1− β
φ

(
x− w√
1− β

)
dw (6)

The standardized Webb+Gaussian probability density φ(x; δ2;β) is plotted in Fig. 2 for δ2 = 1 and
various values of the blending parameter β. We note that the pure Webb and pure Gaussian densities
can be obtained as special cases of the Webb+Gaussian density: φ(w; δ2) = φ(w; δ2, 1), φ(x) = φ(x; δ2, 0)
for any δ2, and φ(x) = φ(x;∞, β) for any β.

The full output x = q+q′ of the APD is written in terms of the standardized Webb+Gaussian random
variable as x = m + m′ +

√
σ2 + σ′2 WG(0, 1, δ2, β), where β = σ2/(σ2 + σ′2), and m′ and σ′2 are given

by Eq. (3), as before. The probability density p(x) for the full APD output is then

p(x) =
1√

σ2 + σ′2
φ

(
x−m−m′√

σ2 + σ′2
; δ2, β

)
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functions [see Eq. (6)].
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D. The AWGN Approximation

When the skewness parameter δ2 is large, the Webb random variable q in Eq. (4) can be approximated
by a Gaussian random variable N(m, σ2) with the same mean, m = Gn̄, and variance, σ2 = n̄G2F . The
corresponding Gaussian probability density for q is

pG(q) ≈ 1
σ

φ

(
x−m

σ

)
(7)

Furthermore, the full APD output x = q + q′ is also Gaussian, N(m+m′, σ2 +σ′2), and Eq. (2) simplifies
to a single Gaussian probability density function:

p(x) ≈ 1√
σ2 + σ′2

φ

(
x−m−m′√

σ2 + σ′2

)
(8)

where [2]

m + m′ = Gn̄ +
IsTs
e−

σ2 + σ′
2 = G2Fn̄ + 2BTs

(
IsTs
e−

+ κT
2Ts
Re2
−

)

E. The APD Models with PPM Signaling

For PPM signaling, the mean number of photons absorbed in a given PPM slot depends on whether
the signal is present or absent in that slot. The average number of photons, n̄, absorbed by an APD
during a PPM slot of duration Ts is given by
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n̄ =
η

hν

∫ Ts

0

P (t)dt =
{

n̄1 ≈ η(n̄b + n̄s) signal present
n̄0 ≈ ηn̄b signal absent

(9)

where n̄b and n̄s, are, respectively, the average number of background photons incident on the detector
per PPM slot and the average number of signal photons incident on the detector per signal pulse. Here
the approximations in relating n̄1 and n̄0 to the physical parameters ignore small contributions from
bulk leakage current and incomplete modulation extinction. See Appendix A for physical quantities and
notation. A more complete analysis of the dependence of the optical capacity on the physical parameters
will be given in a future article. In the current article, the general capacity expressions are derived without
explicitly relating n̄1 and n̄0 to the physical quantities, except for relying on the fact that n̄1 ≥ n̄0. The
approximations in Eq. (9) are only used later to relate our numerical evaluations of the general capacity
expressions to realistic physical parameter values.

The Webb model for PPM signaling (here called Webb-2) uses the density in Eq. (4) with two different
values of n̄: once with the average number n̄1 of photons in the signal slot and a second time with the
average number n̄0 of photons in the M − 1 non-signal slots. Similarly, the AWGN approximation for
PPM signaling (here called AWGN-2) uses the density in Eq. (7) or Eq. (8) twice, with n̄ = n̄1 in the
signal slot and n̄ = n̄0 in the M − 1 nonsignal slots.

Since the mean m and variance σ2 of the Webb-distributed electron count q are both proportional to
n̄, and n̄1 ≥ n̄0, it follows that the mean m1 and the variance σ2

1 of q in the signal slots are no smaller
than the corresponding mean m0 and variance σ2

0 in the nonsignal slots. The additional mean m′ and
the additional variance σ′2 contributed by thermal noise and surface leakage current is the same for both
signal and nonsignal slots. Just as a single Webb density with variance σ2 approaches a Gaussian density
with the same variance when δ2 → ∞, the two different Webb densities characterizing the signal and
nonsignal slots can each be approximated by Gaussian densities if their individual skewness parameters δ2

1

and δ2
0 become large. Thus, a Gaussian approximation for the optical PPM channel leads to a somewhat

more general Gaussian channel than the familiar additive white Gaussian noise (AWGN) channel. In this
article, we examine two separate versions of the Gaussian problem, the familiar Gaussian model with a
common variance in all of the slots (here called AWGN-1) and also a “double Gaussian” model (AWGN-2)
with greater variance in the signal slot than the common variance in the nonsignal slots.

F. Fundamental Parameter Definitions for PPM Capacity Calculations

In our PPM capacity derivations in the next section for the various idealized channel models, we
find that the following four fundamental parameters give useful insights into the capacity limits derived
for these models. A signal-to-noise ratio (SNR) parameter, ρ0 = (m1 − m0)2/(σ2

0 + σ′2), measuring
the ratio of the energy in the difference of the mean counts in the signal and nonsignal slots to the
variance in the nonsignal slots, plays a role similar to that of the channel symbol SNR, Es/N0, for the
standard AWGN-1 channel. Next, a second SNR parameter, ρ+ = (m1−m0)2/(σ2

1 − σ2
0), measured with

reference to the excess noise variance in the signal slots above that in the nonsignal slots, determines
how closely the AWGN-2 model resembles the classic AWGN-1 model. A third parameter, ∆ = δ2

1 − δ2
0 ,

measures the degree to which the Webb-2 model differs from the AWGN-2 model. A fourth parameter,
β0 = σ2

0/(σ2
0 + σ′2), measures the blending of the Webb and Gaussian components in the nonsignal slots.

Finally, a derived parameter, ρb, obtained from ρ0 and the computed capacity, plays a role similar to that
of the bit SNR, Eb/N0, for the standard AWGN-1 channel.

The usefulness of these parameter definitions is that they tend to isolate three types of different
effects on capacity due to using the more complicated Webb-2 model versus the familiar AWGN-1 model:
(1) the normal monotonic variation of capacity with the signal-to-noise ratio supplied to the channel;
(2) the sometimes strange effects on capacity that have nothing to do with the Webb density but are
solely due to the unequal variances in the signal and nonsignal slots; and (3) effects on capacity when
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the Webb probability density is not adequately approximated by a Gaussian, or when the total density
blends Webb and Gaussian components.

By plugging in n̄ for the signal and nonsignal slots from Eq. (9), we find that the three parameters
for a pure Webb-2 channel, modeling the APD output without thermal noise and surface leakage current,
are given in terms of the physical optical system parameters by

ρ0 =
(m1 −m0)2

σ2
0

=
(n̄1 − n̄0)2

n̄0F
≈ ηn̄2

s

n̄bF

ρ+ =
(m1 −m0)2

σ2
1 − σ2

0

=
n̄1 − n̄0

F
≈ ηn̄s

F

∆ = δ2
1 − δ2

0 =
(n̄1 − n̄0)F
(F − 1)2

≈ ηn̄sF

(F − 1)2


(10)

We note from these equations that, for the optical channel, the parameter ∆, measuring the deviation of
a Webb density from a Gaussian approximation, and the parameter ρ+, measuring the effects of unequal
variances, are different by a factor depending only on the excess noise factor F , i.e., ∆ = ρ+F 2/(F − 1)2.
Furthermore, the fundamental SNR parameter ρ0 is approximately equal to ρ+ times a factor n̄s/n̄b that
is often routinely considered to be the proper SNR measure for the optical channel. Because the variance
σ2 and the skewness parameter δ2 on the optical APD channel are each linearly proportional to the
number of absorbed photons, this imposes an additional constraint that

σ2
0

σ2
1

=
δ2
0

δ2
1

=
n̄0

n̄1
=

ρ+

ρ0 + ρ+
(11)

Finally, this allows us to express the Webb-2 skewness parameters δ2
0 and δ2

1 in terms of the fundamental
capacity parameters ρ0, ρ+, and ∆ as

δ2
0 =

ρ+

ρ0
∆

δ2
1 =

ρ0 + ρ+

ρ0
∆

 (12)

For the Webb+Gaussian channel, modeling the full APD output, including the effects of thermal noise
and surface leakage current, we find that the fundamental parameters ρ+ and ∆ are exactly as given
above, while the definition of the primary SNR parameter ρ0 takes into account the additional common
variance σ′2 contributed by the Gaussian thermal noise and surface leakage current, and the blending
parameter β0 measures the proportion of the total variance contributed by the Webb component:

ρ0 =
(m1 −m0)2

σ2
0 + σ′2

=
β0(n̄1 − n̄0)2

n̄0F

β0 =
σ2

0

σ2
0 + σ′2

=
1

1 +
2BTs

G2Fn̄0

(
IsTs
e−

+ κT
2Ts
Re2
−

)


(13)
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The parameter relationships noted in Eq. (11) for the pure Webb-2 channel remain valid for the
Webb+Gaussian channel if ρ0 is replaced by ρ0/β0. In this case, the analog to Eq. (11) is

σ2
0

σ2
1

=
δ2
0

δ2
1

=
β0

β1
=

n̄0

n̄1
=

β0ρ+

ρ0 + β0ρ+
(14)

and we can express δ2
0 , δ2

1 , and β1 in terms of the other parameters as

δ2
0 =

β0ρ+

ρ0
∆

δ2
1 =

ρ0 + β0ρ+

ρ0
∆

β1 = β0 +
ρ0

ρ+


(15)

When the AWGN-2 model is used as in Eq. (7) to model the pure Webb-2 channel, then the parameters
for this channel are ρ0 and ρ+, defined by Eq. (10). When the AWGN-2 model is used as in Eq. (8) to
model the full APD output, the parameters are ρ0, given by Eq. (13), and ρ+, given by Eq. (10).

Notice that the gain, G, of the APD does not enter into the definitions of the parameters ρ+ or ∆
or the primary SNR parameter ρ0 for the pure Webb-2 model. The APD gain G only enters into the
relative weighting of the σ2

0 and the σ′2 variances (i.e., the parameter β0) in the definition of ρ0 for the
Webb+Gaussian model (or for the AWGN-2 model that approximates the Webb+Gaussian model).

III. Capacity of M-ary PPM on Channels with Soft Outputs

For each channel model, we consider the communication system shown in Fig. 3. The output
U = (U1, U2, · · · , Uk) of a k-bit source is modulated with (M = 2k)-ary PPM to yield a signal
X = (X1, X2, · · · , XM ). A PPM modulator is equivalent to an encoder producing the M = 2k code-
words of a (2k, k) orthogonal code. Thus, the capacity of M -PPM is the same as that of an orthogonal
signal set with M codewords, and of M -ary frequency shift keying (M -FSK).

Since X is an invertible function of U, the observation of Y provides an average I(Y; X) bits of
information about the input U, where I(Y; X) is the mutual information between Y and X. The capacity
of PPM modulation on the channel is the maximum amount of information that can be transmitted
reliably and is given by C = maxp(X) I(Y; X). Because of the symmetry of orthogonal signals and of the
channels considered, capacity is achieved with an equiprobable M -ary source distribution p(X = x) =
1/M , ∀x ∈ {x1, x2, · · · , xM}.

M -ary
PPM MODULATOR CHANNEL

U X Y

Fig. 3.  Model for PPM capacity calculations.
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The channel capacity with input signals restricted to an M -ary orthogonal constellation C, and no
restriction on the channel output, is given by

C =
1
M

∑
x∈C

∫
y

p(y|x) log2

 p(y|x)
1
M

∑
x̂∈C p(y|x̂)

 dy (16)

where y = (y1, · · · , yM ) is the received vector. Because of the symmetry of orthogonal codes with respect
to the inputs {x1, · · · , xM}, this expression reduces to

C =
∫

y

p(y|x1) log2

 p(y|x1)
1
M

∑
x̂∈C p(y|x̂)

 dy

= log2 M − Ey|x1
log2

[∑M
j=1 p(y|xj)
p(y|x1)

]
(17)

= log2 M − Ev|x1
log2

[∑M
j=1 p(v|xj)
p(v|x1)

]
(18)

where v is a random vector obtained from y via an arbitrary invertible transformation.

The capacity formula in Eq. (17) can be computed in principle, as long as p(y|xj) is known for all xj .
However, uninspired computation of the expectation of the right side of Eq. (17) requires evaluation of
an M -dimensional integral. Fortunately, this M -dimensional expectation can be accurately estimated via
Monte Carlo simulation for all of the channels considered. The method is simply to generate pseudoran-
dom M -vectors y according to the probability density, p(y|x1), then to evaluate the logarithmic function
inside the expectation for each sample y thus generated, and finally to average the computed logarithm
over many pseudorandom samples. This Monte Carlo method was the most practical method to calculate
numerical capacities for all of the channels considered below, whenever M was larger than about 4.

The subsections below give the explicit forms of the channel transition probability function p(y|xj) for
each of the channels considered, along with some channel-specific simplifications in the capacity formulas.

A. Capacity of M-ary PPM on the Standard AWGN Channel (AWGN-1)

In this case, the possible signals X are of the form xj = (xj1, · · · , xjM ) = (0, 0, 0, · · · , 0, m, 0, · · · , 0),
where the nonzero signal value m is in position j. The transmitted vector x is corrupted by additive
white Gaussian noise with zero mean and variance σ2 in each component. Thus, given a transmitted
signal x = xj , the components of the received vector y are conditionally independent Gaussian random
variables, identically distributed except for yj :

yj is N(m, σ2) (signal present)

yi is N(0, σ2), i 6= j (signal absent)

}
(19)

This is the model for any set of M -ary orthogonal signals, with energy per M -dimensional symbol
Es = m2, transmitted on an AWGN channel with two-sided noise spectral density N0/2 = σ2. Note that,
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in the case of PPM signaling, Es refers to the energy per PPM symbol, not per PPM slot. A symbol
signal-to-noise ratio can be defined by ρ = m2/σ2 = 2Es/N0.2

For the distributions in Eq. (19), we have

p(y|xj) =
(

1
2πσ2

)M/2

exp
[
− (yj −m)2

σ2

] M∏
i=1
i6=j

exp
[
− y2

i

2σ2

]
(20)

Defining vj = yj/σ, we obtain

p(v|xj)
p(v|x1)

= exp
[
1
2

[
v2
j − (vj −

√
ρ)2 − v2

1 + (v1 −
√

ρ)2
]]

(21)

The random variables {vj} are conditionally independent, given {x1}, and distributed as

v1 is N(
√

ρ, 1)

vj is N(0, 1), j 6= 1

}
(22)

Using Eq. (21) in Eq. (18), we get an expression for the capacity of orthogonal signaling on the AWGN-1
channel:

C(ρ) = log2 M − Ev|x1
log2

M∑
j=1

exp [
√

ρ(vj − v1)] (23)

For M -PPM on the AWGN-1 channel, both the capacity in Eq. (23) and the uncoded probability of
symbol error (see Section V) are functions of the single parameter ρ = m2/σ2, not of m and σ separately.
This is a statement of the well-known fact that the AWGN-1 channel is fully characterized by its SNR
and does not depend on an overall scaling of the signal and noise.

For large M , the law of large numbers allows us to approximately replace the last M − 1 terms
in Eq. (23) by M − 1 times their mean (see derivation in Appendix C). Then the AWGN capacity can be
approximated as3

C(ρ) ≈ log2 M − Ev1|x1
log2

[
1 + (M − 1)eρ/2e−

√
ρv1

]
(24)

where v1 is N(
√

ρ, 1) given x1.

B. Capacity of M-ary PPM on a More General Gaussian Channel (AWGN-2)

Now we extend the analysis to cover a “double Gaussian” problem (here called AWGN-2) related
more directly to the PPM optical model and characterized by different means and variances depending
on whether the signal is present or absent.

2 Note that ρ defined in this manner is 3 dB higher than the usual symbol SNR defined as Es/N0.

3 A similar result for noncoherent M -FSK was derived in [1].
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Given a transmitted signal x = xj , the components of the received vector y are conditionally inde-
pendent Gaussian random variables, identically distributed except for yj :

yj is N(m1, σ
2
1) (signal present)

yi is N(m0, σ
2
0), i 6= j (signal absent)

}
(25)

where m1 > m0 and σ2
1 > σ2

0 . By symmetry of the orthogonal PPM signal constellation, capacity can be
evaluated by Eq. (17). For the distribution in Eq. (25), we have

p(y|xj) =
(

1
2πσ2

0

)(M−1)/2 (
1

2πσ2
1

)1/2

exp
[
− (yj −m1)2

2σ2
1

] M∏
i=1
i6=j

exp
[
− (yi −m0)2

2σ2
0

]
(26)

Thus,

p(y|xj)
p(y|x1)

= exp

[
v2
j − u2

j − v2
1 + u2

1

2

]
(27)

where vj = (yj −m0)/σ0 and uj = (yj −m1)/σ1.

We define a symbol SNR parameter, ρ0 = (m1 −m0)2/σ2
0 , analogously to the SNR parameter ρ for

the AWGN-1 channel, where the reference noise level in the AWGN-2 case is the variance σ2
0 in the noise

slots. We also define a second SNR parameter, ρ+ = (m1 −m0)2/(σ2
1 − σ2

0), where the reference noise
level is the excess noise variance in the signal slot compared with that in the noise slots (guaranteed to be
nonnegative since σ2

1 ≥ σ2
0). The AWGN-2 problem reduces to the AWGN-1 problem in the limit as this

second SNR parameter ρ+ → ∞. With these definitions, the {vj} are conditionally independent given
x1, and distributed as

v1 is N

(
√

ρ0,
ρ0 + ρ+

ρ+

)
vj is N(0, 1), j 6= 1

 (28)

In terms of the {vj}, the {uj} are determined by the invertible transformation:

uj =
√

ρ+

ρ0 + ρ+
(vj −

√
ρ0) (29)

Thus, we have

uj ± vj = vj

(√
ρ+

ρ0 + ρ+
± 1

)
−

√
ρ0ρ+

ρ0 + ρ+
(30)

Noting that u2
j − v2

j = (uj + vj)(uj − vj), we use the expressions for uj ± vj to calculate the exponent in
Eq. (27), and obtain the capacity from Eq. (18) in the form

11



C(ρ0, ρ+) = log2 M − Ev|x1 log2

M∑
j=1

exp

[
ρ+

ρ0 + ρ+

√
ρ0(vj − v1) +

ρ0

ρ0 + ρ+

v2
j − v2

1

2

]
(31)

This equation reduces to the standard AWGN-1 capacity for orthogonal signals, Eq. (23), in the limit as
ρ+ →∞ for a given ρ0.

For M -PPM on an AWGN-2 channel, both the capacity in Eq. (31) and the uncoded proba-
bility of symbol error (see Section V) are functions of the parameters ρ0 = (m1 − m0)2/σ2

0 and
ρ+ = (m1 − m0)2/(σ2

1 − σ2
0). This is a statement that the AWGN-2 channel is fully characterized

by just two parameters, an overall SNR parameter, ρ0, and an additional SNR parameter, ρ+, measured
relative to the excess variance in the signal slots versus that in the nonsignal slots. The four individual
parameters m0, m1, σ2

0 , and σ2
1 defining the AWGN-2 channel do not affect the capacity independently.

The reduction from four to two parameters in this case implies that the capacity is not affected by either
an overall scale factor or a common displacement of the means.

In the limit as ρ+ → ∞ for a given ρ0, the problem reduces to the familiar AWGN-1 channel. At
the other extreme, in the limit as ρ+/ρ0 → 0, (i.e., the average background count, n̄b, is insignificant
compared with the average signal count, n̄s), the conclusions resemble those derived for a pure Poisson
quantum-limited model, and there is no fundamental lower limit on the ratio of signal energy to the
variance contributed by the signal alone.

For large M , the AWGN-2 capacity can be approximated as (see derivation in Appendix C)

C(ρ0, ρ+) = log2 M − Ev1|x1 log2

[
1 + (M − 1)

√
ρ0 + ρ+

ρ+
exp

(
ρ0ρ+ − 2ρ+

√
ρ0v1 − ρ0v

2
1

2 (ρ0 + ρ+)

)]

where v1 is N
(√

ρ0, [ρ0 + ρ+]/ρ+

)
given x1.

C. Capacity of M-ary PPM on Webb-Distributed Channels (Webb-1 and Webb-2)

The Webb-1 channel model simply substitutes Webb random variables W (·, ·, ·) for the Gaussian
random variables N(·, ·) in Eq. (19) for the AWGN-1 channel model. Given a transmitted signal x = xj ,
the components of the received vector y are conditionally independent Webb random variables, identically
distributed except for yj :

yj is W (m, σ2, δ2) (signal present)

yi is W (0, σ2, δ2), i 6= j (signal absent)

}
(32)

That is, the conditional probability density functions are

p(yj |xj) =
1
σ

φ

(
yj −m

σ
; δ2

)

p(yi|xj) =
1
σ

φ
(yi

σ
; δ2

)
, i 6= j

where φ(·; ·) is given in Eq. (5). Thus, for the Webb-1 model,

12



p(y|xj)
p(y|x1)

=

σ−M φ

(
yj −m

σ
; δ2

) M∏
i=1
i6=j

φ
(yi

σ
; δ2

)

σ−M φ

(
y1 −m

σ
; δ2

) M∏
i=2

φ
(yi

σ
; δ2

) =
φ(vj −

√
ρ; δ2)φ(v1; δ2)

φ(v1 −
√

ρ; δ2)φ(vj ; δ2)
(33)

where, as in the AWGN-1 channel, vj = yj/σ and ρ = m2/σ2. These variables {vj} are conditionally
independent, given {x1}, and distributed as

v1 is W (
√

ρ, 1, δ2)

vj is W (0, 1, δ2), j 6= 1

}
(34)

The capacity of the Webb-1 channel is given by plugging into Eq. (18):

C(ρ, δ) = log2 M − Ev|x1
log2

M∑
j=1

φ
(
vj −

√
ρ; δ2

)
φ

(
v1; δ2

)
φ

(
v1 −

√
ρ; δ2

)
φ (vj ; δ2)

(35)

The Webb-2 channel model substitutes Webb random variables W (·, ·, ·) for the Gaussian random
variables N(·, ·) in Eq. (25) for the AWGN-2 channel model. Given a transmitted signal x = xj , the
components of the received vector y are conditionally independent Webb random variables, identically
distributed except for yj :

yj is W (m1, σ
2
1 , δ2

1) (signal present)

yi is W (m0, σ
2
0 , δ2

0), i 6= j (signal absent)

}
(36)

The conditional probability density functions are

p(yj |xj) =
1
σ1

φ

(
yj −m1

σ1
; δ2

1

)

p(yi|xj) =
1
σ0

φ

(
yi −m0

σ0
; δ2

0

)
, i 6= j

where φ(·; ·) is given by Eq. (5). Following the same method as in Eq. (33), we have

p(y|xj)
p(y|x1)

=
φ(uj ; δ2

1)φ(v1; δ2
0)

φ(u1; δ2
1)φ(vj ; δ2

0)
(37)

where, as in the AWGN-2 channel, vj = (yj − m0)/σ0 and uj = (yj − m1)/σ1. Using Eq. (29), this
becomes

p(y|xj)
p(y|x1)

=
φ

(√
ρ+

ρ0 + ρ+

(
vj −

√
ρ0

)
; δ2

1

)
φ

(
v1; δ2

0

)
φ

(√
ρ+

ρ0 + ρ+

(
v1 −

√
ρ0

)
; δ2

1

)
φ (vj ; δ2

0)
(38)
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where again ρ0 = (m1 − m0)2/σ2
0 and ρ+ = (m1 − m0)2/(σ2

1 − σ2
0). Defining ∆ = δ2

1 − δ2
0 and using

Eq. (12) to eliminate δ2
1 and δ2

0 , we obtain the capacity of the Webb-2 channel by plugging into Eq. (18):

C(ρ0, ρ+,∆) = log2 M − Ev|x1
log2

M∑
j=1

φ

(√
ρ+

ρ0 + ρ+

(
vj −

√
ρ0

)
;
ρ0 + ρ+

ρ0
∆

)
φ

(
v1;

ρ+

ρ0
∆

)
φ

(√
ρ+

ρ0 + ρ+

(
v1 −

√
ρ0

)
;
ρ0 + ρ+

ρ0
∆

)
φ

(
vj ;

ρ+

ρ0
∆

) (39)

In these expectations, the {vj} are conditionally independent, given {x1}, and distributed as

v1 is W

(
√

ρ0,
ρ0 + ρ+

ρ+
,
ρ0 + ρ+

ρ0
∆

)

vj is W

(
0, 1,

ρ+

ρ0
∆

)
, j 6= 1

 (40)

D. Capacity of M-ary PPM on a Webb+Gaussian Channel

The Webb+Gaussian channel model substitutes Webb+Gaussian random variables WG(·, ·, ·, ·) for the
Webb random variables W (·, ·, ·) in Eq. (36) for the Webb-2 channel model. Given a transmitted signal
x = xj , the components of the received vector y are conditionally independent Webb+Gaussian random
variables, identically distributed except for yj :

yj is WG(m1, σ
2
1 , δ2

1 , β1) (signal present)

yi is WG(m0, σ
2
0 , δ2

0 , β0), i 6= j (signal absent)

}
(41)

The conditional probability density functions are

p(yj |xj) =
1
σ1

φ

(
yj −m1

σ1
; δ2

1 , β1

)

p(yi|xj) =
1
σ0

φ

(
yi −m0

σ0
; δ2

0 , β0

)
, i 6= j

where φ(·; ·, ·) is given by Eq. (6). Following the same method as in Eq. (37), we have

p(y|xj)
p(y|x1)

=
φ(uj ; δ2

1 , β1)φ(v1; δ2
0 , β0)

φ(u1; δ2
1 , β1)φ(vj ; δ2

0 , β0)
(42)

where, as for the AWGN-2 channel, vj = (yj − m0)/σ0 and uj = (yj − m1)/σ1. Using Eq. (29), this
becomes

p(y|xj)
p(y|x1)

=
φ

(√
ρ+

ρ0 + ρ+
(vj −

√
ρ0); δ2

1 , β1

)
φ(v1; δ2

0 , β0)

φ

(√
ρ+

ρ0 + ρ+
(v1 −

√
ρ0); δ2

1 , β1

)
φ(vj ; δ2

0 , β0)
(43)
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where ρ0 = (m1 −m0)2/(σ2
0 + σ′2) and ρ+ = (m1 −m0)2/(σ2

1 − σ2
0). Again defining ∆ = δ2

1 − δ2
0 , and

using Eq. (15) to eliminate δ2
1 , δ2

0 , and β1, we obtain the capacity of the Webb+Gaussian channel by
plugging into Eq. (18):

C(ρ0, ρ+, ∆, β0) =

log2 M − Ev|x1
log2

M∑
j=1

φ

(√
ρ+

ρ0 + ρ+
(vj −

√
ρ0);

ρ0 + ρ+

ρ0
∆, β0 +

ρ0

ρ+

)
φ

(
v1;

ρ+

ρ0
∆, β0

)
φ

(√
ρ+

ρ0 + ρ+
(v1 −

√
ρ0);

ρ0 + ρ+

ρ0
∆, β0 +

ρ0

ρ+

)
φ

(
vj ;

ρ+

ρ0
∆, β0

) (44)

In these expectations, the {vj} are conditionally independent, given {x1}, and distributed as

v1 is WG(
√

ρ0,
ρ0 + ρ+

ρ+
,
ρ0 + ρ+

ρ0
∆, β0 +

ρ0

ρ+
)

vj is WG(0, 1,
ρ+

ρ0
∆, β0), j 6= 1

 (45)

IV. Bit-SNR Capacity Limits of M-ary PPM on Channels with Soft Outputs

In the case of the classic AWGN-1 channel, the capacity formulas imply a well-known threshold on
the minimum required signal-to-noise ratio (SNR) per information bit communicated over the channel.
If the AWGN-1 channel SNR is Es/N0 (per channel symbol), the corresponding bit SNR is computed as
Eb/N0 = (Es/N0)/R (per information bit), where R (information bits/channel symbol) is the rate of the
overall code applied to the channel. If the rate is at the capacity limit, then R = C, and the formula for
the minimum possible bit SNR is (Eb/N0)min = (Es/N0)/C. For the AWGN-1 channel, it is well known
that reliable communication is possible with appropriate coding if and only if (Eb/N0)min does not drop
below a brick-wall threshold of −1.59 dB. Higher thresholds apply if the code rate is constrained away
from zero or if there are constraints on the modulation format.

In this section, we find numerically that all of the channels considered in the previous section have
quasi-brick-wall bit-SNR thresholds analogous to the well-known thresholds for the classic AWGN-1
channel. To unify the treatment of these channels, we define a minimum bit-SNR parameter ρb = ρ/(2C)
or ρb = ρ0/(2C) for each channel. Note that this definition for the AWGN-1 channel reduces to ρb =
(Es/N0)/C = (Eb/N0)min, so graphs of capacity versus ρb have exactly the same interpretation in this
case as classic AWGN-channel graphs of capacity versus (Eb/N0)min.

A. The AWGN-1 Channel

Exact computation of C for large dimensions is extremely complex, and it is necessary to resort to
Monte Carlo methods as described in [5, Appendix I]. Figure 4 is an evaluation of PPM capacity on the
AWGN-1 channel obtained by Monte Carlo simulation of Eq. (23) for M = 2, 4, 8, 16, 32, 64, 256. The
figure shows AWGN-1 capacity as a function of the minimum required bit SNR ρb = ρ/(2C) = Eb/N0.
We see from this figure that the restriction to an M -ary signal set causes the capacity curves for M -PPM
to saturate at log2 M bits, no matter how much SNR is supplied. On the other end of the scale, there
is a characteristic minimum value of Eb/N0 for each M below which the capacity drops to zero. These
minimum values result directly from restricting the M -dimensional signaling set to be the orthogonal set,
and are discussed more in Section VI. When these capacity results are plotted on a (vertical) log scale
(e.g., see Fig. 7 later), each capacity curve appears to approach a vertical brick wall at the minimum
attainable value of Eb/N0.
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Fig. 4.  PPM capacity on the AWGN-1 channel, determined by
Monte Carlo simulation.
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Figure 5 gives a subset of the same capacity curves in Fig. 4, except that in this case the curves for
M = 2, 4 were computed exactly from Eq. (23) using Mathematica. Figure 5 also overlays several related
performance curves for comparison. First, in the case of 256-PPM, the analytic Approximation (24) is
compared with the more exact evaluation of Eq. (23) using Monte Carlo simulation. Next, the figure
superimposes a set of points (artificially connected by a curve) showing the actual signaling rate (not
capacity) in bits per channel use versus the required Eb/N0 for uncoded M -PPM to achieve a bit-error
probability (BER) of Pb = 10−6, where Pb = (1/2)(M/[M − 1])PM , and the probability of uncoded
symbol error, PM , is given later in Eq. (48). The horizontal displacements between this curve and the
family of capacity curves show how much room there is for improvement over an uncoded system at
this BER. Finally, the figure shows (as dashed curves) the capacity formulas C = (k/2) log2(1 + ρ) =
(k/2) log2(1 + 2REb/N0) for k-dimensional Gaussian channels unrestricted as to modulation type, which
can be explicitly solved at the capacity limit R = C for (Eb/N0)min = (22C/k − 1)/2C.

B. The AWGN-2 Channel

Figure 6 shows the capacity of 256-PPM obtained by Monte Carlo integration of Eq. (31) for the
AWGN-2 model, plotted for different values of ρ+ versus the bit-normalized SNR parameter defined by
ρb = ρ0/(2C). Plotted (on a log scale) versus ρb, the AWGN-2 capacity curves for different values of
ρ+ all saturate at 8 bits per channel use (since this is for 256-PPM), and they all appear to approach
the same brick-wall threshold of −1.57 dB on the minimum attainable value of ρb for 256-PPM, at least
down to capacity levels below about 1 bit per channel use. At low values of ρ+ (e.g., ρ+ = 5 in the figure,
which corresponds to a physical parameter ηn̄s = 10.8 with an APD excess noise factor of F = 2.16), the
capacity curves appear to approach the same asymptotes but the curvature in between is less pronounced
and the capacity for fixed ρb is less than for the pure AWGN-1 model. When ρ+ is made really small,
typically corresponding to an average of less than one absorbed photon per slot, we have noticed that the
capacity curves do not stop at the brick-wall limit of −1.57 dB, i.e., there is a very small nonzero capacity
for ρb below −1.57 dB. This effect probably also shows up for any finite ρ+, but at capacity levels too
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Fig. 5.  PPM capacity on the AWGN-1 channel, compared with
other performance curves.
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Fig. 6.  256-PPM capacity on the AWGN-2 channel, deter-
mined by Monte Carlo simulation.  The case r+ = ¥ is equiv-
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low to be simulated accurately (much less than 1 bit per channel use). This breaching of the brick-wall
threshold for very low values of capacity per channel use needs to be studied in more depth whenever we
extend our results to the Poisson limit (corresponding to small ρ+ as compared with ρ0).

C. The Webb Channels

We evaluated the M -dimensional expectations in Eq. (39) accurately via Monte Carlo simulation. Some
results are plotted in Fig. 7 for the Webb-2 channels for different PPM orders M . Corresponding curves
for the AWGN-1 channel are shown for comparison. The abscissa in this figure is the normalized bit SNR,
ρb = ρ/(2C) for AWGN-1 and ρb = ρ0/(2C) for Webb-2. Along each Webb-2 curve, the two independent
variables held constant are ∆ = 60.8 and ρ+ = 17.6, which correspond to a representative optical APD
problem with ηn̄s = 38 detected signal photons per PPM word and an excess noise factor F = 2.16.
The x-axis in this figure also shows “simplex-to-orthogonal” penalty factors, which are discussed later in
Section VI.

We see from this figure that the capacity curves for the more complicated Webb-2 model again resemble
those for the well-known AWGN-1 model, as they bend around from horizontal asymptotes at log2 M
bits per channel use to an apparent vertical asymptote at ρb = 10 log10[(M ln 2)/(M − 1)] dB. Again, as
with the AWGN-2 capacity curves, there is evidence that the vertical asymptote is breached at very low
values of capacity per channel use, but this is not noticeable in simulations except when ρ+ is also very
small.

Figure 8 gives the Webb-2 capacity curves for the same set of physical parameters considered in Fig. 7,
except that in this case the capacity is plotted versus the average background count, n̄b, instead of versus
ρb. In each case, the capacity curves start at their asymptotic limit, log2 M for small values of n̄b and
then plummet toward zero as n̄b is increased above n̄s.

Figure 9 plots the capacity of 256-PPM on a Webb-2 channel for various values of n̄s = Fρ+/η. Again
the abscissa is the bit-normalized SNR parameter ρb = ρ0/(2C). Note that the Webb-2 capacity curves
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in Fig. 9 approach the capacity curve of the AWGN-2 channel (shown for reference) more closely as n̄s,
or, equivalently, ρ+, gets large.

V. Capacity of M-ary PPM on Channels with Hard Outputs

For the AWGN-2 and Webb-2 channels, we also computed the capacity with hard-decision channel
outputs. When a hard-decision detection scheme is used, the decoder operates on PPM symbol decisions
from the demodulator, not individual soft counts. The modulator output is the PPM symbol having
the maximum slot count [10]. This hard-decision channel is an M -ary input, M -ary output, symmetric
channel with capacity given by [3]

C = log2 M + (1− PM ) log2(1− PM ) + PM log2

(
PM

M − 1

)
(46)

bits per channel use, where PM is the probability of incorrect symbol detection.

The probability of incorrect symbol detection is calculated as PM = 1 − Pr[yj < y1,∀j 6= 1|x1] =
Pr[vj < v1,∀j 6= 1|x1] for the various definitions of {yj} and {vj} used in determining the capacities of
the AWGN and Webb channels. Given the conditional independence of the observations in the M − 1
nonsignal slots, this reduces to

PM = 1− Ev1|x1
P0(v1)M−1 (47)

where P0(v) is the cumulative probability distribution function for the normalized channel symbols {vj} in
the nonsignal slots. Using the conditional statistics of v1 given x1 in Eqs. (22), (28), (34), (40), and (45),
we can find the probability of uncoded M -PPM symbol error, PM , for the various channels considered in
Section III.

For the AWGN-1 channel, PM is given by

PM = 1−
∫ ∞
−∞

φ (v −√ρ) Φ(v)M−1dv (48)

where φ(x) = (1/
√

2π)e−x
2/2 is the standard normalized Gaussian probability density function and

Φ(x) =
∫ x
−∞ φ(u)du is the corresponding normalized Gaussian probability distribution function. For the

AWGN-2 channel, we have

PM = 1−
∫ ∞
−∞

√
ρ+

ρ0 + ρ+
φ

(√
ρ+

ρ0 + ρ+
(v −√ρ0)

)
Φ(v)M−1dv (49)

Note that, when ρ+ → ∞ and ρ0 = ρ, the AWGN-2 channel becomes the AWGN-1 channel, and
Eq. (49) reduces to Eq. (48).

For the Webb channels, first define Φ(x; δ2) =
∫ x
−δ φ(w; δ2)dw to be the cumulative probability distri-

bution corresponding to the normalized Webb probability density function defined in Eq. (5). Then PM
for the Webb-1 channel is computed as

PM = 1−
∫ ∞
−∞

φ
(
w −√ρ; δ2

)
Φ(w; δ2)M−1dw (50)
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Similarly, for the Webb-2 channel,

PM = 1−
∫ ∞
−∞

√
ρ+

ρ0 + ρ+
φ

(√
ρ+

ρ0 + ρ+
(w −√ρ0) ; δ2

1

)
Φ

(
w; δ2

0

)M−1
dw (51)

Finally, for the Webb+Gaussian channel,

PM = 1−
∫ ∞
−∞

√
ρ+

ρ0 + ρ+
φ

(√
ρ+

ρ0 + ρ+
(x−√ρ0) ; δ2

1 , β1

)
Φ(x; δ2

0 , β0)M−1dx (52)

where Φ(x; δ2, β) =
∫ x
−δ φ(y; δ2, β)dy is the cumulative probability distribution corresponding to the

standardized Webb+Gaussian probability density function defined in Eq. (6).

The soft-decision capacities obtained in Section III can be compared with the hard-decision capacities
obtained by plugging the various formulas for PM into the general hard-decision capacity expression
of Eq. (46). Figure 10 compares capacities for the hard-output and soft-output AWGN-2 channels for
the case of M = 256. A similar comparison of capacities is shown in Fig. 11 for the hard-output and
soft-output Webb-2 channels. The hard-output Webb-2 capacity was computed in [6].

The capacity curves for both the AWGN-2 and the Webb-2 channels show that a minimum value of
ρb is reached at a nonzero code rate. Unlike the soft-output channels, which exhibit monotonically better
efficiency in terms of the bit-normalized SNR parameter ρb as the code rate (and hence the capacity
per channel use) is reduced toward zero, the bit-normalized SNR efficiency of the hard-output channel
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Fig. 10.  Capacity of 256-PPM on the hard- and soft-output
AWGN-2 channels.
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worsens if the capacity is lowered below about 4 bits per channel use. This implies that an optimum code
rate of about 1/2 will achieve the lowest ρb for the hard-output channel, while the soft-output channel
achieves lowest ρb in the limit as the code rate goes to 0.

Another comparison of capacity for the hard-output and soft-output Webb models is shown in Fig. 12,
this time plotted versus n̄b. The hard-output capacity in this figure was computed in [6] for the general
Webb+Gaussian channel that also models the effects of thermal noise.

VI. Capacity Results for Simplex Signaling

In this section, we demonstrate a similarity between AWGN and Webb channels in the fundamental
brick-wall limits for M -ary orthogonal signaling and simplex signaling.

A. AWGN Channels

Among all M -ary signaling schemes on the AWGN-1 channel, the simplex set maximizes the capacity
C at low Eb/N0 [7]. The simplex set achieves the same capacity as an M -ary orthogonal signaling scheme
that uses a factor of M/(M − 1) more energy per bit. Applying the Shannon limit of Eb/N0 > ln 2 ≈
−1.59 dB, it follows that any M -ary orthogonal signaling scheme requires Eb/N0 > (M ln 2)/(M − 1) for
reliable communication to occur. Thus, each M -ary orthogonal signal has an associated Eb/N0 penalty of
10 log10 M/(M − 1) dB. This is illustrated in Fig. 13(a), where each M -ary orthogonal signaling capacity
curve has a vertical asymptote at Eb/N0 > (M ln 2)/(M − 1). When translated to simplex signal sets
by shifting left by 10 log10 M/(M − 1) dB, the vertical asymptotes for each of the curves coincide at
Eb/N0 = −1.59 dB, as shown in Fig. 13(b).

B. Webb Channels

On the Webb-2 channel, we observe the same behavior. In Fig. 14(a), capacity curves for M -ary
orthogonal signaling on the Webb-2 channel have varying vertical asymptotes. When translated by
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10 log10 M/(M − 1) dB, as in Fig. 14(b), these vertical asymptotes coincide at −1.59 dB in the same
way they did on the AWGN-1 channel. Although simplex signaling on the Webb-2 channel may not be
practical because it would necessitate coherent detection instead of simple photon detection, this finding
illustrates an important similarity between the brick-wall limits on the AWGN and Webb channels. In
both cases, the restriction to a finite orthogonal signal set imposes the same fundamental penalty on the
minimum achievable bit SNR.
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VII. Comparison of Capacity Results with Actual Code Performance

Figure 15 shows the performance of Reed–Solomon (RS) codes on GF(2k) applied to 2k-PPM for
Pb = 10−6. For each curve, the alphabet size is fixed and, therefore, the Reed–Solomon codeword size is
fixed at (2k − 1) k-bit symbols. The curves are obtained by varying the code rate within each RS code
family. For these curves, the RS decoder is assumed to correct only errors (i.e., no erasures), and the
uncoded symbol-error probability is given by Eq. (48) with M = 2k. As an example, the performance of
the (255,223) RS code, with code rate approximately 7/8, is plotted at approximately 7 bits per channel
use on the 8-bit RS curve in Fig. 15. This code requires 2.6 dB for Pb = 10−6 and is only 1.8 dB worse
than the capacity limit achievable by arbitrary codes of the same rate for 256-PPM (see the gap marked
with “B” in Fig. 15). The additional gap, marked as “A,” is due to constraining the 256-dimensional
signal set to be orthogonal. Note that the comparison between the performance of RS codes and the
two capacity limits does not account for the fact that the RS decoder uses hard quantized inputs while
both capacity limits are computed for unconstrained channel output. This limitation must account for
some portion of the nonoptimality of RS codes. Another interesting observation from Fig. 15 is that RS
codes appear to be optimum approximately at rate 3/4 for all alphabet sizes. Lower-rate RS codes have
progressively worse performance. However, Fig. 15 suggests the possibility of finding codes of rate 1/2
or lower that can achieve Pb = 10−6 at Eb/N0 ≤ 0 dB. This would be a gain of 2.6 dB or more over the
(255,223) RS code with 256-PPM. Thus, it is natural to look for codes of rate 1/2 and lower to attempt
to approach capacity more closely than RS codes.

Some results are available on simple binary turbo codes of rate 1/2 and 1/3 as compared with RS
codes of the same rate.4 (See also [4].) The performance of these codes is estimated in Fig. 15 by using
the following approximation. The required input symbol-error probabilities to achieve Pb = 10−6 with
RS codes or turbo codes are related to the Eb/N0 required for uncoded 256-PPM to obtain those symbol-
error probabilities. The difference in required Eb/N0 between RS and turbo codes is used to plot the
turbo-code performance relative to the RS performance. This is an approximate comparison because the
turbo codes were not simulated exactly on a PPM system with Gaussian noise. These results indicate
that, while these binary turbo codes do outperform RS codes of the same rate, there still remains a gap
of several dB to the capacity limit.

4 Data Compression and Channel Coding, X2000 Report (internal document), Jet Propulsion Laboratory, Pasadena, Cali-
fornia, September 15, 1997.
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VIII. Conclusions and Future Work

This article has analyzed several idealized channel models that can be used to approximate PPM
signaling over an APD-detected optical communication channel. We were able to define a suitable bit-
normalized SNR parameter, ρb, such that all of these channels with soft outputs yield quasi-brick-wall
thresholds on the minimum acceptable value of ρb above which reliable communication is theoretically
possible and below which it is not possible except at extremely low channel rates. Furthermore, under all
of these models with soft channel outputs, the bit-SNR thresholds for different values of M differ from
each other by the same “simplex-to-orthogonal penalty,” (M − 1)/M . Under both the AWGN-2 and
Webb-2 models, the gap between the capacities of hard- and soft-output channels is about 3 dB at the
code rate giving the optimum hard-output bit SNR. On the hard-output channels, there is an optimum
M beyond which capacity is diminished [6] because much of the small incremental information available
from each slot is destroyed when all of that information must be summarized as a single decision among
an increasing number of candidate slots. This contrasts sharply with the results for soft decisions, for
which larger M gives uniformly better capacity under each model.

The capacities computed in this article assume that there are no time gaps between successive channel
uses. However, laser transmitters require a sufficient recharging time between pulses, which is guaranteed
by introducing a dead time, Td, between successive channel uses, as shown in Fig. 16. This reduces the
capacity computed above by a factor (Tw + Td)/Tw, where Tw = MTs is the PPM word duration. Since
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this factor can be large, it is important to optimize the trade-off between achievable peak power and
dead time. A more efficient and more information-theoretically sound method to guarantee a minimum
spacing, Td, between pulses is to design a code that inherently satisfies such a constraint. Codes of this
kind, usually called (d, k) codes, have been used extensively in the magnetic recording field. In these
codes, at least d 0s must follow every 1, and not more than k 0s can follow a 1. Here a 1 corresponds to a
pulse and a 0 to no pulse. For laser transmission, the k constraint is not applicable, but the d constraint
directly reflects the need for dead time. In a future article, we will investigate how (d, k) codes can be
designed to maximize the amount of information transmitted subject to this type of constraint.

Ts ONE CHANNEL USE
PPM
SLOT

PPM WORDTd Tw = MTs

Fig. 16.  PPM signaling (M = 4, k = 2).
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Appendix A

Parameters and Notation

The following is a description of parameters and notation in this article, along with nominal values
used in the numerical results.

Laser and modulator parameters

ν 1064 Optical frequency, nm

M 2-256 PPM order

Ts 3.125× 10−8 Width of the PPM slot required by the laser, s

Td 4.32× 10−4 Dead time between PPM symbols required by the laser, s

αer 106 Modulation extinction ratio

APD detector parameters

η 38 percent Quantum efficiency

keff 0.007 Ionization ratio

G 50–200 Gain

F 2.2–3.4 Excess noise factor, F = keffG+ (2− 1/G)(1− keff )

T 300 Noise temperature, K

RL 179,700 Load resistance (transimpedance model), 5.75× 1012 × Ts, Ω

B 1/2Ts Noise equivalent one-sided bandwidth, Hz

Ib 4× 10−14 Bulk leakage current, A

Is 2× 10−9 Surface leakage current, A

n̄ Mean photons incident on the photodetector, per pulse (= n̄b or n̄s)

n̄b 0.001–10,000 Mean background photons incident on the photodetector, per slot

n̄s 100 Mean signal photons incident on the photodetector, per pulse

Physical constants

e− 1.38× 10−23 Electron charge, C

h 6.7× 10−34 Planck’s constant, J/Hz

κ 1.6× 10−19 Boltzmann’s constant, J/K

Mathematical notation

C Capacity, bits per channel use

m,m0,m1 Mean of Gaussian or Webb distribution

σ2, σ2
0 , σ

2
1 Variance of Gaussian or Webb distribution

δ2, δ2
0 , δ

2
1 Skewness parameter of Webb distribution

β, β0, β1 Blending fraction for Webb+Gaussian distribution

ρ Equals m2/σ2 (AWGN-1 or Webb-1 channel)

ρ0 Equals (m1 −m0)2/σ2
0 (AWGN-2 or Webb-2 channel)

ρ0 Equals (m1 −m2
0)/(σ2

0 + σ′2) (Webb+Gaussian channel)
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Mathematical notation (cont’d)

ρb The minimum bit SNR at the capacity limit (equals (Eb/N0)/min on AWGN-1)

ρb Equals

{
ρ/(2C) AWGN-1 or Webb-1 channel
ρ0/(2C) AWGN-2 or Webb-2 or Webb+Gaussian channel

ρ+ Equals (m1 −m0)2/(σ2
1 − σ2

0)

∆ Equals δ2
1 − δ2

0

q Number of electrons generated at the output of the APD

PM Probability of uncoded M -PPM symbol error

φ(x) Gaussian probability density function, 1/(
√

2π)e−x
2/2

Φ(x) Gaussian cumulative distribution function,
∫ x
−∞ φ(y)dy

φ(w; δ2) Webb probability density function, see Eq. (5)

Φ(w; δ2) Webb cumulative distribution function,
∫ w
∞ φ(u; δ2)du

φ(x; δ2, β) Webb+Gaussian probability density function, see Eq. (6)

Φ(x; δ2, β) Webb+Gaussian cumulative distribution function,
∫ x
−∞ φ(y; δ2, β)dy
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Appendix B

Moments of the Standardized Webb Probability Distribution

Let W be distributed according to the standardized Webb density

φ(w; δ2) =
1√
2π

(
1 +

w

δ

)−3/2

exp

 −w2

2
(
1 +

w

δ

)
 , w > −δ

Let X = 1 + W/δ. Then the probability density function of X is related to the inverse Gaussian density
[8,9] by

fX(x) =
δ√
2π

x−3/2 exp
[
−δ2(x− 1)2

2x

]
= f(x; 1, δ2)

It follows that the moment generator function for W is given by

M(s) =
∫ ∞
−δ

eswp(w)dw

=
∫ ∞

0

esδ(x−1)f(x; 1, δ2)dx

= e−sδ
∫ ∞

0

δx−3/2

√
2π

exp
[
−δ2(x− 1)2

2x
+ sδx

]
dx

= e−sδ
∫ ∞

0

δx−3/2

√
2π

exp

−
δ2

(
1− 2s

δ

) (
x−

(
1− 2s

δ

)−1/2
)2

2x


︸ ︷︷ ︸

f(x;(1−2s/δ)−1/2,δ2)

exp

[
δ2

(
1−

√
1− 2s

δ

)]
dx

= exp

[
δ2

(
1−

√
1− 2s

δ
− s

δ

)]

Thus, the mean of W is M ′(0) = 0, the variance is M ′′(0) = 1, and each moment of W is a polynomial
in the parameter 1/δ2.
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Appendix C

Approximation to M-ary PPM AWGN Capacity for Large M

To evaluate the capacity of the AWGN-2 channel for large M , we rewrite Eq. (31) as

C = log2 M − Ev|x1 log2

1 +
M∑
j=2

ezj−z1

 (C-1)

where zj = [ρ0/(ρ0 + ρ+)](v2
j /2) + [ρ+/(ρ0 + ρ+)]

√
ρ0vj . When M is large, the sum of random variables∑M

j=2 ezj converges to (M − 1) times the mean of each ezj , because {zj , j = 2, · · · , M} are independent
and identically distributed, given x1. Thus, the capacity expression can be approximated by

C ≈ log2 M − Ev1|x1 log2

[
1 + e−z1(M − 1)ezj

]
(C-2)

where ezj denotes the mean of ezj . It remains to evaluate ezj .

For any j > 1, zj is a quadratic function of an N(0, 1) random variable vj . To evaluate Ev

[
eav

2/2+bv
]

when v is N(0, 1), we write out the integral

Ev

[
eav

2/2+bv
]

=
1√
2π

∫ ∞
−∞

e−v
2/2eav

2/2ebvdv

=
1√
2π

∫ ∞
−∞

e−(1−a)[v2/2−bv/(1−a)]dv

=
1√
2π

∫ ∞
−∞

e−([1−a]/2)(v−[b/(1−a)])2
e([1−a]/2)(b/[1−a])2

dv

=
1√
2π

√
2π

1− a
e(b2/2)/(1−a) if a < 1

=
1√

1− a
e(b2/2)/(1−a) (C-3)

Since zj is of the above quadratic form with a = ρ0/(ρ0 + ρ+) < 1 and b =
√

ρ0 ρ+/(ρ0 + ρ+), we have
ezj =

√
(ρ0 + ρ+)/ρ+ exp ([ρ0ρ+/2]/[ρ0 + ρ+]). Thus, the approximate capacity expression is

C ≈ log2 M − Ev1|x1 log2

1 + (M − 1)
√

ρ0 + ρ+

ρ+
exp

 ρ0ρ+

2
ρ0 + ρ+

 e−z1


= log2 M − Ev1|x1 log2

[
1 + (M − 1)

√
ρ0 + ρ+

ρ+
exp

(
ρ0ρ+ − 2ρ+

√
ρ0v1 − ρ0v

2
1

2 (ρ0 + ρ+)

)]
(C-4)

where v1 given x1 is N(
√

ρ0, [ρ0 + ρ+]/ρ+), as in Eq. (28). Equation (C-4) is valid for the AWGN-2
channel and reduces to the AWGN-1 channel expression in Eq. (24) in the limit as ρ+ → ∞, with ρ0

replaced by ρ.
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